Power Attack on Small RSA Public Exponent from Partial Information

Pierre-alain Fouque ¹ Sébastien Kunz-Jacques^{1,2} Gwenaëlle Martinet² Frédéric Muller³ Frédéric Valette⁴

¹École normale supérieure,

²DCSSI Crypto Lab,

³HSBC,

⁴CELAR.

October 13, 2006

Outline

- Introduction
 - RSA with small public exponent
 - Side-channel attacks
 - Windowing algorithms
 - Exponent Randomization
- 2 Description of the Attack
 - Hypotheses and Mathematical Background
 - Overview of the Attack
 - Recovering the λ_i
 - Recovering $\varphi(N)$ and d
 - Success Condition
- 3 Extensions
 - Public Exponent $e = 2^{16} + 1$
 - Other Randomizations
 - Practical Results

Outline

- RSA with small public exponent
- Side-channel attacks
- Windowing algorithms
- Exponent Randomization
- 2 Description of the Attack
 - Hypotheses and Mathematical Background
 - Overview of the Attack
 - Recovering the λ_i
 - Recovering $\varphi(N)$ and d
 - Success Condition

3 Extensions

- Public Exponent $e = 2^{16} + 1$
- Other Randomizations
- Practical Results

Outline

- RSA with small public exponent
- Side-channel attacks
- Windowing algorithms
- Exponent Randomization
- 2 Description of the Attack
 - Hypotheses and Mathematical Background
 - Overview of the Attack
 - Recovering the λ_i
 - Recovering $\varphi(N)$ and d
 - Success Condition

3 Extensions

- Public Exponent $e = 2^{16} + 1$
- Other Randomizations
- Practical Results

RSA with small public exponent Side-channel attacks Windowing algorithms Exponent Randomization

RSA with small public exponent

- Notations :
 - the modulus N = p * q of size n
 - the public exponent e
 - the private exponent d is the inverse of e modulo $\varphi(N)$
- public exponent in RSA is usually small : e = 3 or $2^{16} + 1$
- advantage : speed up the signature verification or encryption
- known attacks on RSA with small public exponent:
 - knowledge of consecutive bits of the private exponent leads to the entire key (needs one quarter)
 - non-consecutive bits: no attack

- 4 周 ト 4 ラ ト 4 ラ ト

RSA with small public exponent Side-channel attacks Windowing algorithms Exponent Randomization

leakage in classical implementations

- Partial information on the private exponent is often revealed by power consumption or electromagnetic radiations
- Mainly two cases:
 - Bias on the value of specific bits (ie : $d_i = 1$ with probability $rac{1}{2} + \epsilon$)
 - Known positions for specific bit patterns (e.g. 00)
- Mainly due to poor SPA countermeasures

伺 ト イ ヨ ト イ ヨ

RSA with small public exponent Side-channel attacks Windowing algorithms Exponent Randomization

Side-channel leakage in optimized windowing algorithms

• Fixed-size window:

- M^a is precomputed for $0 \le a \le 2^b 1$
- The exponent d is processed b bits at a time
- If a *b*-bit window of *d* is 0, no multiplication occurs ⇒ SPA leakage
- Usually, we cannot distinguish operand of the multiplications \Rightarrow partial leakage
- Variable-size window:
 - As before, but maximal identically 0 windows are used to further speed up exponentiation
 - After a zero window, we know a window begins by 1

- 4 周 ト 4 戸 ト 4 戸 ト

RSA with small public exponent Side-channel attacks Windowing algorithms Exponent Randomization

The Exponent Randomization Algorithm

- Common technique to protect against power attacks is to randomize
 - the message
 - the secret exponent
 - the modulus...
- The attacked algorithm is the following
 - Inputs: a message M, an exponent d, a modulus N and $\varphi(N)$
 - Output: $M^d \mod N$
 - $\textcircled{ 9 Pick at random } \lambda \in \{0,\ldots,2^\ell-1\}$
 - 2 Compute $d' = d + \lambda \cdot \varphi(N)$
 - Return exponentiation M^{d'} mod N
- for performance reasons, ℓ is small : typically 20 or 32

・ ロ ト ・ 同 ト ・ 三 ト ・

Hypotheses and Mathematical Background Overview of the Attack Recovering the λ_i Recovering $\varphi(N)$ and d Success Condition

Hypotheses and Mathematical Background

Hypotheses :

- public exponent e = 3
- private exponent d_i is randomized: $d_i = d + \lambda_i \cdot \varphi(N)$
- power analysis of a single curve reveals 1/r bits of d_i

Free information :

- about n/2 MSB of $\varphi(N)$ are known and equal to the n/2 MSB of the modulus N
- $d = (1 + k\varphi(N))/e$ with k < e
- for e = 3, k = 2: upper half of d equals upper half of $\overline{d} = 2N/3$

Hypotheses and Mathematical Background Overview of the Attack Recovering the λ_i Recovering $\varphi(N)$ and d Success Condition

Overview of the Attack

- Perform SCA and store each partially known d_i
- Find the unknown value λ_i associated to each d_i using $d_i \approx \bar{d} + \lambda_i N$ and the most significant known bits of d_i
- Find recursively the least significant slices of $\varphi(N)$ and d using the least significant known bits of d_i

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Hypotheses and Mathematical Background Overview of the Attack Recovering the λ_i Recovering $\varphi(N)$ and dSuccess Condition

Recovering the λ_i

```
Inputs: a partially known exponent d_i

Outputs: \lambda_i s.t. d_i = d + \lambda_i \times \varphi(N)

for j = 0 to 2^{\ell} do

if [d_i]_{n/2+\ell,n+\ell} \doteq [\overline{d} + j \times N]_{n/2+\ell,n+\ell} then

\lambda_i \leftarrow j; break

end if

end for

return \lambda_i
```

同 ト イ ヨ ト イ ヨ ト

Hypotheses and Mathematical Background Overview of the Attack Recovering the λ_i Recovering $\varphi(N)$ and d Success Condition

Recovering $\varphi(N)$ and d

- work recursively with a 8-bit window (for example)
- Inputs:
 - $\{(d_i, \lambda_i)\}_{1 \le i \le \omega}$
 - a candidate φ for the 8s LSBs of φ(N), assumed to be correct mod 2^{8(s-1)}
- \bullet Output: a boolean value telling whether ϕ is correct

Idea (first 8 bits)

- From ϕ , deduce the 8 LSBs of d
- for each *i*, using λ_i , compute the 8 LSBs of $d_i = d + \lambda_i \phi$, and check matching with corresponding curve

(日) (同) (三) (三)

Hypotheses and Mathematical Background Overview of the Attack Recovering the λ_i **Recovering** $\varphi(N)$ and d Success Condition

Recovering $\varphi(N)$ and d

```
Inputs: \{(d_i, \lambda_i)\}, \phi

Outputs: boolean b

D \leftarrow \frac{1+2\phi}{3} \mod 2^{8s}

ok \leftarrow True

for i = 1 to \omega do

if \neg \{[d_i]_{0,8s-1} \doteq D + \lambda_i \times \phi \mod 2^{8s}\} then

ok \leftarrow False

end if

end for

return ok
```

同 ト イ ヨ ト イ ヨ ト

Hypotheses and Mathematical Background Overview of the Attack Recovering the λ_i Recovering $\varphi(N)$ and d Success Condition

Success Condition

- Ability to guess a unique value for λ_i
 - there are $\frac{n}{2r}$ known bits of d_i
 - if $\frac{n}{2r} > \ell$ one λ_i will be associated to each d_i
- Ability to guess a unique value of $\varphi(N) \mod 2^{8k}$
 - there are $\frac{8}{r}$ known bits on a 8-bit window of some d_i
 - as long as $\omega \leq 2^8$: experiences for $\neq d_i \approx$ independent
 - if $\frac{8\omega}{r} \gg 8$ only one candidate is maintained with high probability

・ 同 ト ・ ヨ ト ・ ヨ

Public Exponent $e = 2^{16} + 1$ Other Randomizations Practical Results Conclusion

$e = 2^{16} + 1$

- We have $\bar{d} = \lfloor \frac{1+kN}{e} \rfloor + \lambda N$
- 0 < k < e
- For e = 3, we knew that k = 2
- If $e = 2^{16} + 1$, first step: retrieve $\{\lambda_i\}$ and k
- Once k is known, the previous attack applies
- Finding k:
 - simultaneous exhaustive search on k and λ_1
 - can be optimized (see paper)

Public Exponent $e = 2^{16} + 1$ Other Randomizations Practical Results Conclusion

Other Randomizations

- The attack still works if
 - the message is randomized
 - the modulus is randomized during the computation
 - the bits of the private exponent are known only with some probability

伺 ト イヨト イヨト

Public Exponent $e = 2^{16} + 1$ Other Randomizations **Practical Results** Conclusion

Practical Results

Modulus	value	size of	ratio of partial	attack
size	of e	random	information known	success
512	3	20	1/16	no
1024	3	20	1/16	yes
1024	$2^{16} + 1$	20	1/16	yes
2048	3	32	1/32	yes
2048	$2^{16} + 1$	32	1/32	yes

*ロ * * 四 * * 三 * * 三 *

э

Public Exponent $e = 2^{16} + 1$ Other Randomizations Practical Results Conclusion

- Unfortunate interaction of DPA countermeasure and partial SPA leakage
- The anti-DPA randomization also randomizes leakages...
- ...allowing to retrieve the full private exponent.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶